Dallas County
A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained Optimization Qi Deng Southern Methodist University Shanghai university of Finance & Economics Dallas, TX
Nonconvex sparse models have received significant attention in high-dimensional machine learning. In this paper, we study a new model consisting of a general convex or nonconvex objectives and a variety of continuous nonconvex sparsityinducing constraints. For this constrained model, we propose a novel proximal point algorithm that solves a sequence of convex subproblems with gradually relaxed constraint levels. Each subproblem, having a proximal point objective and a convex surrogate constraint, can be efficiently solved based on a fast routine for projection onto the surrogate constraint. We establish the asymptotic convergence of the proposed algorithm to the Karush-Kuhn-Tucker (KKT) solutions. We also establish new convergence complexities to achieve an approximate KKT solution when the objective can be smooth/nonsmooth, deterministic/stochastic and convex/nonconvex with complexity that is on a par with gradient descent for unconstrained optimization problems in respective cases. To the best of our knowledge, this is the first study of the first-order methods with complexity guarantee for nonconvex sparse-constrained problems. We perform numerical experiments to demonstrate the effectiveness of our new model and efficiency of the proposed algorithm for large scale problems.
A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained Optimization Qi Deng Southern Methodist University Shanghai university of Finance & Economics Dallas, TX
Nonconvex sparse models have received significant attention in high-dimensional machine learning. In this paper, we study a new model consisting of a general convex or nonconvex objectives and a variety of continuous nonconvex sparsityinducing constraints. For this constrained model, we propose a novel proximal point algorithm that solves a sequence of convex subproblems with gradually relaxed constraint levels. Each subproblem, having a proximal point objective and a convex surrogate constraint, can be efficiently solved based on a fast routine for projection onto the surrogate constraint. We establish the asymptotic convergence of the proposed algorithm to the Karush-Kuhn-Tucker (KKT) solutions. We also establish new convergence complexities to achieve an approximate KKT solution when the objective can be smooth/nonsmooth, deterministic/stochastic and convex/nonconvex with complexity that is on a par with gradient descent for unconstrained optimization problems in respective cases. To the best of our knowledge, this is the first study of the first-order methods with complexity guarantee for nonconvex sparse-constrained problems. We perform numerical experiments to demonstrate the effectiveness of our new model and efficiency of the proposed algorithm for large scale problems.
How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training
Ou, Yixin, Yao, Yunzhi, Zhang, Ningyu, Jin, Hui, Sun, Jiacheng, Deng, Shumin, Li, Zhenguo, Chen, Huajun
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.
Proceedings 40th International Conference on Logic Programming
Cabalar, Pedro, Fabiano, Francesco, Gebser, Martin, Gupta, Gopal, Swift, Theresa
Since the first conference In Marseille in 1982, the International Conference on Logic Programming (ICLP) has been the premier international event for presenting research in logic programming. These proceedings include technical communications about, and abstracts for presentations given at the 40th ICLP held October 14-17, in Dallas Texas, USA. The papers and abstracts in this volume include the following areas and topics. Formal and operational semantics: including non-monotonic reasoning, probabilistic reasoning, argumentation, and semantic issues of combining logic with neural models. Language design and programming methodologies such as answer set programming. inductive logic programming, and probabilistic programming. Program analysis and logic-based validation of generated programs. Implementation methodologies including constraint implementation, tabling, Logic-based prompt engineering, and the interaction of logic programming with LLMs.
Uber and Wing will partner for drone delivery pilot in Dallas
A new joint venture between Uber's Serve Robotics sidewalk delivery drones and Alphabet's Wing flying drone service will do a dual test run. Both tech companies hope that flying and sidewalk drones can cover areas its counterpart can't and speed up delivery times. TechCrunch reported that Serve Robotics and Wing will start making deliveries in Dallas, Texas sometime in the coming months. The test will include a select number of customer orders being delivered by a combination of sidewalk and flying drones. One of the biggest challenges for drone delivery is coverage.
An Effective Software Risk Prediction Management Analysis of Data Using Machine Learning and Data Mining Method
Xu, Jinxin, Wang, Yue, Li, Ruisi, Wang, Ziyue, Zhao, Qian
For one to guarantee higher-quality software development processes, risk management is essential. Furthermore, risks are those that could negatively impact an organization's operations or a project's progress. The appropriate prioritisation of software project risks is a crucial factor in ascertaining the software project's performance features and eventual success. They can be used harmoniously with the same training samples and have good complement and compatibility. We carried out in-depth tests on four benchmark datasets to confirm the efficacy of our CIA approach in closed-world and open-world scenarios, with and without defence. We also present a sequential augmentation parameter optimisation technique that captures the interdependencies of the latest deep learning state-of-the-art WF attack models. To achieve precise software risk assessment, the enhanced crow search algorithm (ECSA) is used to modify the ANFIS settings. Solutions that very slightly alter the local optimum and stay inside it are extracted using the ECSA. ANFIS variable when utilising the ANFIS technique. An experimental validation with NASA 93 dataset and 93 software project values was performed. This method's output presents a clear image of the software risk elements that are essential to achieving project performance. The results of our experiments show that, when compared to other current methods, our integrative fuzzy techniques may perform more accurately and effectively in the evaluation of software project risks.
Histopathology Based AI Model Predicts Anti-Angiogenic Therapy Response in Renal Cancer Clinical Trial
Jasti, Jay, Zhong, Hua, Panwar, Vandana, Jarmale, Vipul, Miyata, Jeffrey, Carrillo, Deyssy, Christie, Alana, Rakheja, Dinesh, Modrusan, Zora, Kadel, Edward Ernest III, Beig, Niha, Huseni, Mahrukh, Brugarolas, James, Kapur, Payal, Rajaram, Satwik
Background: Predictive biomarkers of treatment response are lacking for metastatic clearcell renal cell carcinoma (ccRCC), a tumor type that is treated with angiogenesis inhibitors, immune checkpoint inhibitors, mTOR inhibitors and a HIF2 inhibitor. The Angioscore, an RNA-based quantification of angiogenesis, is arguably the best candidate to predict anti-angiogenic (AA) response. However, the clinical adoption of transcriptomic assays faces several challenges including standardization, time delay, and high cost. Further, ccRCC tumors are highly heterogenous, and sampling multiple areas for sequencing is impractical. Approach: Here we present a novel deep learning (DL) approach to predict the Angioscore from ubiquitous histopathology slides. In order to overcome the lack of interpretability, one of the biggest limitations of typical DL models, our model produces a visual vascular network which is the basis of the model's prediction. To test its reliability, we applied this model to multiple cohorts including a clinical trial dataset. Results: Our model accurately predicts the RNA-based Angioscore on multiple independent cohorts (spearman correlations of 0.77 and 0.73). Further, the predictions help unravel meaningful biology such as association of angiogenesis with grade, stage, and driver mutation status. Finally, we find our model is able to predict response to AA therapy, in both a real-world cohort and the IMmotion150 clinical trial. The predictive power of our model vastly exceeds that of CD31, a marker of vasculature, and nearly rivals the performance (c-index 0.66 vs 0.67) of the ground truth RNA-based Angioscore at a fraction of the cost. Conclusion: By providing a robust yet interpretable prediction of the Angioscore from histopathology slides alone, our approach offers insights into angiogenesis biology and AA treatment response. Introduction: Patients with metastatic clear cell renal cell carcinoma (ccRCC) are treated with anti-angiogenic (AA) therapies (e.g., vascular endothelial growth factor tyrosine kinase inhibitors VEGF-TKIs), immune checkpoint inhibitors (ICI), mammalian target of rapamycin (mTOR) inhibitors and a hypoxia inducible factor (HIF)-2 inhibitor, either in combination or as monotherapy (1).
Hear Me, See Me, Understand Me: Audio-Visual Autism Behavior Recognition
Deng, Shijian, Kosloski, Erin E., Patel, Siddhi, Barnett, Zeke A., Nan, Yiyang, Kaplan, Alexander, Aarukapalli, Sisira, Doan, William T., Wang, Matthew, Singh, Harsh, Rollins, Pamela R., Tian, Yapeng
In this article, we introduce a novel problem of audio-visual autism behavior recognition, which includes social behavior recognition, an essential aspect previously omitted in AI-assisted autism screening research. We define the task at hand as one that is audio-visual autism behavior recognition, which uses audio and visual cues, including any speech present in the audio, to recognize autism-related behaviors. To facilitate this new research direction, we collected an audio-visual autism spectrum dataset (AV-ASD), currently the largest video dataset for autism screening using a behavioral approach. It covers an extensive range of autism-associated behaviors, including those related to social communication and interaction. To pave the way for further research on this new problem, we intensively explored leveraging foundation models and multimodal large language models across different modalities. Our experiments on the AV-ASD dataset demonstrate that integrating audio, visual, and speech modalities significantly enhances the performance in autism behavior recognition. Additionally, we explored the use of a post-hoc to ad-hoc pipeline in a multimodal large language model to investigate its potential to augment the model's explanatory capability during autism behavior recognition. We will release our dataset, code, and pre-trained models.
New Rules for Domain Independent Lifted MAP Inference
Lifted inference algorithms for probabilistic first-order logic frameworks such as Markov logic networks (MLNs) have received significant attention in recent years. These algorithms use so called lifting rules to identify symmetries in the first-order representation and reduce the inference problem over a large probabilistic model to an inference problem over a much smaller model. In this paper, we present two new lifting rules, which enable fast MAP inference in a large class of MLNs. Our first rule uses the concept of single occurrence equivalence class of logical variables, which we define in the paper. The rule states that the MAP assignment over an MLN can be recovered from a much smaller MLN, in which each logical variable in each single occurrence equivalence class is replaced by a constant (i.e., an object in the domain of the variable). Our second rule states that we can safely remove a subset of formulas from the MLN if all equivalence classes of variables in the remaining MLN are single occurrence and all formulas in the subset are tautology (i.e., evaluate to true) at extremes (i.e., assignments with identical truth value for groundings of a predicate). We prove that our two new rules are sound and demonstrate via a detailed experimental evaluation that our approach is superior in terms of scalability and MAP solution quality to the state of the art approaches.
ClickSAM: Fine-tuning Segment Anything Model using click prompts for ultrasound image segmentation
Guo, Aimee, Fei, Gace, Pasupuletic, Hemanth, Wang, Jing
The newly released Segment Anything Model (SAM) is a popular tool used in image processing due to its superior segmentation accuracy, variety of input prompts, training capabilities, and efficient model design. However, its current model is trained on a diverse dataset not tailored to medical images, particularly ultrasound images. Ultrasound images tend to have a lot of noise, making it difficult to segment out important structures. In this project, we developed ClickSAM, which fine-tunes the Segment Anything Model using click prompts for ultrasound images. ClickSAM has two stages of training: the first stage is trained on single-click prompts centered in the ground-truth contours, and the second stage focuses on improving the model performance through additional positive and negative click prompts. By comparing the first stage's predictions to the ground-truth masks, true positive, false positive, and false negative segments are calculated. Positive clicks are generated using the true positive and false negative segments, and negative clicks are generated using the false positive segments. The Centroidal Voronoi Tessellation algorithm is then employed to collect positive and negative click prompts in each segment that are used to enhance the model performance during the second stage of training. With click-train methods, ClickSAM exhibits superior performance compared to other existing models for ultrasound image segmentation.